## Technical Specifications and Data

| Туре                                         |                                          | TS-1.3S               | TS-1.6SL      | TS-1.8SL | TS-2.1SL | TS-1.3U | TS-1.6UL | TS-1.8UL | TS-2.1UL |  |  |  |
|----------------------------------------------|------------------------------------------|-----------------------|---------------|----------|----------|---------|----------|----------|----------|--|--|--|
| Housing                                      | Material                                 |                       | Polycarbonate |          |          |         |          |          |          |  |  |  |
| Fibers                                       | Material                                 | Polysulfone           |               |          |          |         |          |          |          |  |  |  |
|                                              | Inner diameter (µm)                      | 200                   |               |          |          |         |          |          |          |  |  |  |
|                                              | Membrane thickness (µm)                  | 40                    |               |          |          |         |          |          |          |  |  |  |
|                                              | Effective surface area (m <sup>2</sup> ) | 1.3                   | 1.6           | 1.8      | 2.1      | 1.3     | 1.6      | 1.8      | 2.1      |  |  |  |
| Potting M                                    | laterial                                 |                       |               |          | Polyure  | ethane  |          |          |          |  |  |  |
| Sterilization                                |                                          | Gamma-ray Irradiation |               |          |          |         |          |          |          |  |  |  |
| Blood Volume (mL)                            |                                          | 84                    | 95            | 105      | 124      | 85      | 95       | 108      | 125      |  |  |  |
| Clearance                                    | e <b>in vitro</b> (mL/min)*              |                       |               |          |          |         |          |          |          |  |  |  |
|                                              | Urea                                     | 193                   | 195           | 198      | 198      | 193     | 196      | 198      | 199      |  |  |  |
|                                              | Creatinine                               | 187                   | 193           | 195      | 195      | 185     | 192      | 196      | 197      |  |  |  |
|                                              | Phosphate                                | 179                   | 192           | 194      | 195      | 180     | 193      | 196      | 196      |  |  |  |
|                                              | Vitamin B <sub>12</sub>                  | 140                   | 156           | 164      | 168      | 140     | 162      | 167      | 171      |  |  |  |
|                                              | Inulin                                   | 104                   | 124           | 129      | 138      | 110     | 131      | 140      | 142      |  |  |  |
| UFR in vitro {mL/hr, at 13.3kPa (100mmHg)}** |                                          | 4,400                 | 4,900         | 5,000    | 5,200    | 4,300   | 4,900    | 5,100    | 5,500    |  |  |  |
| Max. TMP {kPa (mmHg)}                        |                                          |                       | 66 (500)      |          |          |         |          |          |          |  |  |  |

\* Clearances are measured with aqueous solution.  $Q_B$ : 200 ±4mL/min,  $Q_D$ : 500 ±10mL/min,  $Q_F$ : 10 ±2mL/min, Temp.: 37 ±1°C

\*\* UFRs are measured data with bovine blood. (Ht 30 ±2%, TP 6 ±0.5g/dL)  $Q_B$ : 200 ±4mL/min, TMP: 13.3 ±1.3kPa (100 ±10mmHg), Temp.: 37 ±1°C

"Instructions for Use" should be read thoroughly prior to the use of these medical devices.

Specifications and designs are subject to change without notice for improvements







| TS-1.3S                                    |     |     |     |          | TS-1.3U                                    |     |     |     |     |  |  |
|--------------------------------------------|-----|-----|-----|----------|--------------------------------------------|-----|-----|-----|-----|--|--|
| Q <sub>B</sub>                             | 200 | 300 | 400 | 500      | Q <sub>B</sub>                             | 200 | 300 | 400 | 500 |  |  |
| UR; Urea                                   | 193 | 255 | 289 | 320      | UR; Urea                                   | 193 | 257 | 294 | 323 |  |  |
| CR; Creatinine                             | 187 | 235 | 260 | 285      | CR; Creatinine                             | 185 | 238 | 264 | 285 |  |  |
| PO <sub>4</sub> ; Phosphate                | 179 | 223 | 250 | 268      | PO <sub>4</sub> ; Phosphate                | 180 | 224 | 250 | 268 |  |  |
| VB <sub>12</sub> ; Vitamin B <sub>12</sub> | 140 | 161 | 172 | 187      | VB <sub>12</sub> ; Vitamin B <sub>12</sub> | 140 | 164 | 178 | 187 |  |  |
| IN; Inulin                                 | 104 | 117 | 131 | 140      | IN; Inulin                                 | 110 | 123 | 135 | 143 |  |  |
| TS-1.6SL                                   |     |     |     |          | TS-1.6UL                                   |     |     |     |     |  |  |
| Q <sub>B</sub>                             | 200 | 300 | 400 | 500      | Q <sub>B</sub>                             | 200 | 300 | 400 | 500 |  |  |
| UR; Urea                                   | 195 | 271 | 320 | 348      | UR; Urea                                   | 196 | 274 | 326 | 358 |  |  |
| CR; Creatinine                             | 193 | 255 | 293 | 315      | CR; Creatinine                             | 192 | 259 | 301 | 327 |  |  |
| PO <sub>4</sub> ; Phosphate                | 192 | 248 | 283 | 307      | PO <sub>4</sub> ; Phosphate                | 193 | 250 | 287 | 311 |  |  |
| VB <sub>12</sub> ; Vitamin B <sub>12</sub> | 156 | 187 | 207 | 221      | VB <sub>12</sub> ; Vitamin B <sub>12</sub> | 162 | 194 | 216 | 232 |  |  |
| IN; Inulin                                 | 124 | 142 | 156 | 175      | IN; Inulin                                 | 131 | 152 | 170 | 184 |  |  |
| TS-1.8SL                                   |     |     |     | TS-1.8UL |                                            |     |     |     |     |  |  |
| Q <sub>B</sub>                             | 200 | 300 | 400 | 500      | Q <sub>B</sub>                             | 200 | 300 | 400 | 500 |  |  |
| UR; Urea                                   | 198 | 275 | 332 | 363      | UR; Urea                                   | 198 | 277 | 332 | 367 |  |  |
| CR; Creatinine                             | 195 | 262 | 306 | 333      | CR; Creatinine                             | 196 | 264 | 308 | 340 |  |  |
| PO <sub>4</sub> ; Phosphate                | 194 | 254 | 292 | 317      | PO <sub>4</sub> ; Phosphate                | 196 | 258 | 297 | 324 |  |  |
| VB <sub>12</sub> ; Vitamin B <sub>12</sub> | 164 | 197 | 218 | 234      | $VB_{12}$ ; Vitamin $B_{12}$               | 167 | 202 | 226 | 248 |  |  |
| IN; Inulin                                 | 129 | 153 | 165 | 182      | IN; Inulin                                 | 140 | 162 | 182 | 202 |  |  |
| TS-2.1SL                                   |     |     |     | TS-2.1UL |                                            |     |     |     |     |  |  |
| Q <sub>B</sub>                             | 200 | 300 | 400 | 500      | Q <sub>B</sub>                             | 200 | 300 | 400 | 500 |  |  |
| UR; Urea                                   | 198 | 279 | 335 | 369      | UR; Urea                                   | 199 | 280 | 336 | 371 |  |  |
| CR; Creatinine                             | 195 | 268 | 313 | 342      | CR; Creatinine                             | 197 | 268 | 314 | 344 |  |  |
| PO <sub>4</sub> ; Phosphate                | 195 | 258 | 296 | 321      | PO <sub>4</sub> ; Phosphate                | 196 | 259 | 299 | 326 |  |  |
| VB <sub>12</sub> ; Vitamin B <sub>12</sub> | 168 | 204 | 230 | 249      | $VB_{12}$ ; Vitamin $B_{12}$               | 171 | 207 | 235 | 253 |  |  |
| INE Incilin                                | 120 | 160 | 100 | 100      | Nic Inculin                                | 142 | 166 | 105 | 204 |  |  |

196 IN; Inulir 142 166 185 204 Measured data with aqueous solution

#### References

- 1) Sakai, K., taken from the presentation made at the 48th Annual Meeting of the Japanese Society for Dialysis Therapy, Jun. 2003 (Fig.1, Table 1)
- 2) Hayama, M., Yamamoto, K., Kohori, F., Sakai K., et al., Biomaterials 25 (2004) 1019-1028 (Fig.1, Table 1) 3) Sakai, Y., et al., taken from the presentation made at the 22nd Annual Meeting of ISBP, Sep. 2004 (Fig. 5) 4) Miyaji, H., et al., taken from the presentation made at
- the 20th Annual Meeting of HPM, Mar. 2004 (Fig. 6, 7) 5) Onishi, N., et al., taken from the presentation made at the 31st Shikoku Dialysis Therapy Research Group, 1997 (Fig. 8, 9)



EC REP

Exporter:

Manufacturer:



## Hollow Fiber Dialyzer Toraysulfone TS-S/U SERIES





Toray International Italy S.r.I. Via Mecenate 86, 20138 Milan, ITALY TEL: 39-02-580-39133 / FAX: 39-02-580-16317

Toray Medical Co., Ltd. Dialysis Products Business Division 8-1, Mihama 1-chome, Urayasu, Chiba 279-8555, JAPAN TEL: 81-47-700-7537 / FAX: 81-47-700-7558 / E-MAIL: TMC\_INTL\_FL@tmc.toray.co.jp

Toray Industries, Inc. 1-1, Nihonbashi-Muromachi 2-chome, Chuo-ku, Tokyo 103-8666, JAPAN TEL: 81-3-3245-5144 / FAX: 81-3-3245-5609

Printed in Japan 1005 G



## **Toraysulfone—Excellent Polysulfone Membrane—**

# Optimum Membrane Structure by Advanced Nano-Technology



#### Sharp Molecular Weight Cut-off

Polysulfone membrane has an asymmetric membrane structure with high solute removability and ultrafiltration.

Fig. 1 shows, A: TEM observation on membrane section, B and C: AFM observation on membrane surface. All of them show the asymmetric pore structure of the membrane.

Table 1 is a comparison of each polysulfone membrane structure by nanoscopic characterization using Atomic Force Microscope.

The result suggests that Toray Toraysulfone has the following characteristics compared to other polysulfone membranes.

1. Substances can pass easily through the membrane because of its thin skin layer, small tortuosity and short pore length. 2.Larger molecular weight substances such as albumin do not easily pass through Toraysulfone membrane because of its low water content and small pore at skin layer.

Toray polysulfone" Toraysulfone" has an optimal membrane structure among high-flux polysulfone membranes.

## **Crosslinked Structure of PVP in Toraysulfone Membrane**

Polyvinylpyrrolidone (PVP) in Toraysulfone membrane is crosslinked during  $\gamma$ -ray sterilization, and less PVP is eluted from membrane.

> Fig. 2 is an observation of three different polysulfone membranes after soaking in DMAc (solvent for polysulfone).

PVP dissolves away together with polysulfone in A2 and A3 membrane. However crosslinked PVP in Toraysulfone remains as a transparent structure.

Crosslinked PVP in Toraysulfone remains even in the solvent.

Toraysulfone has less elution of PVP compared to other membranes.

#### **Spacer Yarns**

Toraysulfone hollow fibers are covered by 'Spacer yarns' as shown in Fig. 3.

Spacer yarns facilitate the dialysate to flow uniformly around the hollow fibers and to reduce the" mass transfer resistance in

dialysate side" without affecting a pressure drop in the dialysate compartment.

Spacer yarns help to enhance the efficiency of dialysis









Water content Tortuosity Thickness Pore diameter Pore leng

Table 1

| Membrane     | Skin<br>layer | (%)<br>Support<br>layer | Skin<br>layer | Support<br>layer | ()<br>Skin<br>layer | um)<br>Support<br>layer | (ni<br>Skin<br>layer | m)<br>Support<br>layer | (µm) <sup>-</sup> |
|--------------|---------------|-------------------------|---------------|------------------|---------------------|-------------------------|----------------------|------------------------|-------------------|
| Toraysulfone | 27            | 70                      | 1.13          | 1                | 2                   | 38                      | 8.8                  | 418                    | 40.3              |
| A1           | 31            | 70                      | 1.73          | 1                | 3                   | 42                      | 11                   | 494                    | 47.2              |
| A2           | 42            | 73                      | 1.14          | 1                | 7                   | 38                      | 9.5                  | 499                    | 46.0              |
| A3           | 47            | 77                      | 1.80          | 1                | 2                   | 38                      | 13.0                 | 699                    | 41.6              |



## Superior Performance and Proven Biocompatibility

#### **Clinical Evaluation of Clearance**

Clearances of new Toraysulfone TS series and BS series (current product) were compared in 8 end stage renal disease (ESRD) patients (crossover study).

Clearances of phosphate and  $\alpha$ 1-MG in TS series were significantly higher than BS series. (Fig. 6)

In comparison of clearances in 6 ESRD patients (crossover study) between TS series and another polysulfone dialyzer (APS), clearances in uric acid and  $\alpha$ 1-MG were also significantly higher in Toraysulfone TS series. (Fig. 7)



#### **Comparison of Biocompatibility**

Significant change in C3a and leukocyte counts were observed with FB (CTA membrane). In contrast, less significant changes were observed with Toraysulfone membrane. This suggests that the Toraysulfone membrane has better biocompatibility than that of FB. (Fig. 8, 9)



# **Toraysulfone BS** ravsulfone TS

## **Helical Slits Structure**

Toraysulfone TS series has specially designed baffle structure with helical slits, in order to obtain the uniform flow of dialysate. (Fig. 4)

Fig. 5

In this new design, the baffle was arranged so as to surround both ends of the fiber bundle. The dialysate uniformly penetrates into the fiber bundle from surrounding slits.

Uniformity of dialysate flow in the new Toraysulfone TS series can be observed by X-ray CT scan as shown in Fig. 5.

