

Hollow Fiber Dialyzer

TORAY FILTRYZER NF series

New PMMA membrane The membrane having the property of protein adsorption and suppressing structural change of adsorbed proteins

Design concept of a new PMMA membrane

PMMA has an adsorption property of several kinds of proteins. As the one of the reasons for the occurrence of coagulation during hemodialysis, it is considered that platelets are activated by adhesion on membrane surface because of recognizing protein structure which was changed by

adsorption on membrane (Fig.1 a). In TORAY FILTRYZER[™] NF (NF), we aimed at suppressing platelet adhesion on membrane surface by preventing proteins adsorbed on membrane from structural changes (Fig.1 b).

Structural change of adsorbed proteins

Structural change of albumin adsorbed on membrane was analyzed by using "Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)". Peak of amide bond of albumin adsorbed on NF membrane was closer to that of native albumin than that on conventional PMMA membrane (Fig.2).

Improvement of anti-thrombogenecity

Platelet adhesion on the NF membrane surface was lower than the conventional PMMA membrane (Fig.3).

The amounts of fibrinogen adsorbed on the NF membrane were lower than the conventional PMMA membrane (Fig.4).

Fig.2 ATR-FTIR spectra of albumin adsorbed on the NF and conventional PMMA membranes, and native human serum albumin¹⁾

Suppression of platelet adhesion on membrane

Fig.3 Platelet adsorption on membrane surface in vitro²⁾ (SEM image obtained from in vitro investigation using human blood.)

Suppression of fibrinogen adsorption on membrane

SEM image Small molecular substances : Low molecular weight proteins : Middle and high molecular weight proteins

Dialvsate side

Fig.5 Image of PMMA membrane obtained by scanning electronic microscopy (SEM) and schematic diagram of solutes removal in PMMA³⁾

The PMMA-specific adsorption property

PMMA membrane has a homogenous structure

(Fig.5). The whole membrane plays roles of both

the separating layer for solutes and the adsorp-

with uniform pore size from inside to outside

It is confirmed that platelet adhesion is suppressed in NF while adsorption performance in NF is almost equal to conventional PMMA (Fig. 6, 7).

Protein adsorption

tion for proteins.

Fig.7 Adsorption amounts of β_2 -microglobulin^{2) #)} Fig.6 Electrophoretic patterns of proteins adsorbed by membrane^{2) #)}

Fig.4 Adsorption amounts of fibrinogen^{2) #)}

1) Oshihara W et al. Contrib Nephrol 2017:189:230-236

2) Takahashi H et al., Kidney and Dialysis (suppl.) High Performance Membrane '13 2013:75:230-236. 3) Sugaya H et al., Kidney and Dialysis (suppl.) High Performance Membrane '06 2006:61:19-23. #: Results were obtained from in vitro investigation using human plasma

Туре	NF-1.3H	NF-1.6H	NF-1.8H	NF-2.1H
Effective surface area (m ²)	1.3	1.6	1.8	2.1
Clearance (mL/min) ¹⁾				
Q _B =200mL/min				
Urea	186	190	192	193
Creatinine	170	176	178	182
Phosphate	161	168	172	176
Vitamin B ₁₂	110	119	124	132
Inulin	56	68	75	81
Q _B =300mL/min				
Urea	239	250	257	264
Creatinine	204	220	228	238
Phosphate	187	203	212	223
Vitamin B ₁₂	119	134	140	152
Inulin	59	77	77	87
Q _B =400mL/min				
Urea	279	293	304	312
Creatinine	234	248	260	271
Phosphate	207	220	236	251
Vitamin B ₁₂	128	141	154	165
Inulin	62	75	82	83
KoA ²⁾	707	824	916	1,027
UFR (Ultrafiltration coefficient) (mL/hr/mmHg) ³⁾	36	43	48	55

Performance (in vitro)

Aqueous solution, Q_D: 500±10mL/min, Q_F: 10±2mL/min, Temp.: 37±1°C.
KoA was calculated by clearanece for Urea at Q_B=300 mL/min.
UFR was measured by using bovine blood at a TMP of 50 mmHg in accordance with ISO 8637.

Specifications

Housing	material	Polystyrene	
Fibers	Material	Polymethylmethacrylate (PMMA)	
	Inner diameter (µm)	200	
	Membrane thickness (µm)	30	
Potting r	naterial	Polyurethane	
Sterilizat	ion	Gamma-ray Irradiation	
Maximur	n TMP (kPa (mmHg))	66 (500)	
Range of	e of blood flow rates (mL/min) 100 – 400		
Maximur	n dialysate flow (mL/min)	1000	

Manufacturer: Toray Industries, Inc. 1-1, Nihonbashi-Muromachi 2-chome, Chuo-ku, Tokyo 103-8666, JAPAN

Exporter: Toray Medical Co., Ltd. 4-1, Nihonbashi-Honcho 2-chome, Chuo-ku, Tokyo 103-0023, JAPAN

